Abstract

Tissue-engineered dermal substitutes represent a promising approach to improve wound healing and provide more sufficient regeneration, compared with current clinical standards on care of large wounds, early excision, and grafting of autografts. However, inadequate regenerative capacity, impaired regeneration/degradation profile, and high cost of current commercial tissue-engineered dermal regeneration templates hinder their utilization, and the development of an efficient and cost-effective tissue-engineered dermal substitute remains a challenge. Inspired from our previously reported data on a pullulan/gelatin scaffold, here we present a new generation of a porous pullulan/gelatin scaffold (PG2) served as a dermal substitute with enhanced chemical and structural characteristics. PG2 shows excellent biocompatibility (viability, migration, and proliferation), assessed by in vitro incorporation of human dermal fibroblasts in comparison with the Integra® dermal regeneration template (Control). When applied on a mouse full-thickness excisional wound, PG2 shows rapid scaffold degradation, more granulation tissue, more collagen deposition, and more cellularity in comparison with Control at 20 days post surgery. The faster degradation is likely due to the enhanced recruitment of inflammatory macrophages to the scaffold from the wound bed, and that leads to earlier maturation of granulation tissue with less myofibroblastic cells. Collectively, our data reveal PG2's characteristics as an applicable dermal substitute with excellent dermal regeneration, which may attenuate scar formation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.