Abstract

In this study, Mn-Ce-Ox/γ-Al2O3 supported catalysts were adopted to promote the removal efficiency of aniline in simulated wastewater with ozone. Mn-Ce-Ox/γ-Al2O3 catalysts were prepared by the impregnation-calcination method. Its phase structure, specific surface area, loading amount and distribution of active units were analyzed by XRD, BET, ICP-AES and TEM/SEM respectively. The characterization results demonstrated that the catalysts had a good dispersion of Mn-Ce-Ox active sites and an abundant porous structure from the γ-Al2O3 support. The catalytic ozonation results showed that with Mn3-Ce1-Ox/γ-Al2O3(1.0), the aniline removal efficiency was highly improved, 15.0% higher than that of ozonation without a catalyst. Furthermore, from the variation in loading amounts of Mn and Ce, it can be seen that the molar ratio of Mn and Ce within the Mn-Ce-Ox plays a key role in accelerating the ozonation of aniline in simulated wastewater with ozone, while Mn:Ce = 1.9:1 showed the best performance. More importantly, the catalysts showed high recycling performance and could be reused at least 12 times without obvious loss of activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.