Abstract

With the increase in use of nanomaterials, there is growing concern regarding their potential health risks. However, few studies have assessed the role of the different physical characteristics of nanomaterials in allergic responses. Here, we examined whether intranasally administered silica particles of various sizes have the capacity to promote allergic immune responses in mice. We used nanosilica particles with diameters of 30 or 70 nm (nSP30 or nSP70, respectively), and conventional micro-sized silica particles with diameters of 300 or 1000 nm (nSP300 or mSP1000, respectively). Mice were intranasally exposed to ovalbumin (OVA) plus each silica particle, and the levels of OVA-specific antibodies (Abs) in the plasma were determined. Intranasal exposure to OVA plus smaller nanosilica particles tended to induce a higher level of OVA-specific immunoglobulin (Ig) E, IgG and IgG1 Abs than did exposure to OVA plus larger silica particles. Splenocytes from mice exposed to OVA plus nSP30 secreted higher levels of Th2-type cytokines than mice exposed to OVA alone. Taken together, these results indicate that nanosilica particles can induce allergen-specific Th2-type allergic immune responses in vivo. This study provides the foundations for the establishment of safe and effective forms of nanosilica particles.

Highlights

  • With the recent development of nanotechnology, many nanomaterials with innovative functions have been developed

  • Antigen-specific IgE Ab responses to silica particles To assess the relationship between the size of silica particles and allergic immune responses, we used nanosilica particles with diameters of 30 or 70 nm, and conventional micro-sized silica particles with diameters of 300 or 1,000 nm

  • To investigate the potential of silica particles to enhance allergic immune responses, we examined their effect on the production of allergenspecific Abs responses in vivo

Read more

Summary

Introduction

With the recent development of nanotechnology, many nanomaterials with innovative functions have been developed. Nanosilica particles are increasingly being used for many applications, including cosmetics, food technology, medical diagnosis, cancer therapy, and drug delivery [1,2,3,4]. Numerous studies have shown that several types of nanomaterials increase the incidence of allergic immune diseases [12,13,14]. Activation of the Th2 response, including production of interleukin (IL)-4, IL-5, and IL-13 from Th2 cells (a subset of CD4+ T cells) and immunoglobulin (Ig) G1 or IgE from B cells, is responsible for many of the pathologic features of allergic immune diseases [15]. Some reports have shown that intranasal or airway exposure to nanomaterials promotes allergic immune responses, indicating the immune-activating potential of nanomaterials [12,13]. The role of the different physical characteristics of nanomaterials in the production of allergic responses has not been elucidated

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.