Abstract

The catalysts Ni/Al2O3and CaO modified Ni/Al2O3were prepared by impregnation method and applied for methanation of CO2. The catalysts were characterized by N2adsorption/desorption, temperature-programmed reduction of H2(H2-TPR), X-ray diffraction (XRD), and temperature-programmed desorption of CO2and H2(CO2-TPD and H2-TPD) techniques, respectively. TPR and XRD results indicated that CaO can effectively restrain the growth of NiO nanoparticles, improve the dispersion of NiO, and weaken the interaction between NiO and Al2O3. CO2-TPD and H2-TPD results suggested that CaO can change the environment surrounding of CO2and H2adsorption and thus the reactants on the Ni atoms can be activated more easily. The modified Ni/Al2O3showed better catalytic activity than pure Ni/Al2O3. Ni/CaO-Al2O3showed high CO2conversion especially at low temperatures compared to Ni/Al2O3, and the selectivity to CH4was very close to 1. The high CO2conversion over Ni/CaO-Al2O3was mainly caused by the surface coverage by CO2-derived species on CaO-Al2O3surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.