Abstract

We present an equivariant bijection between two actions—promotion and rowmotion—on order ideals in certain posets. This bijection simultaneously generalizes a result of R. Stanley concerning promotion on the linear extensions of two disjoint chains and certain cases of recent work of D. Armstrong, C. Stump, and H. Thomas on noncrossing and nonnesting partitions. We apply this bijection to several classes of posets, obtaining equivariant bijections to various known objects under rotation. We extend the same idea to give an equivariant bijection between alternating sign matrices under rowmotion and under B. Wieland's gyration. Lastly, we define two actions with related orders on alternating sign matrices and totally symmetric self-complementary plane partitions. Nous prèsentons une bijection èquivariante entre deux actions—promotion et rowmotion—sur les idèaux d'ordre dans certaines posets. Cette bijection gènèralise simultanèment un rèsultat de R. Stanley concernant la promotion sur les extensions linèaire de deux cha\^ınes disjointes et certains cas des travaux rècents de D. Armstrong, C. Stump, et H. Thomas sur les partitions noncroisèes et nonembo\^ıtèes. Nous appliquons cette bijection à plusieurs classes de posets pour obtenir des bijections èquivariantes a des diffèrents objets connus sous la rotation. Nous gènèralisons la même idèe pour donnè une bijection èquivariante entre les matrices à signes alternants sous rowmotion et sous la gyration de B. Wieland. Finalement, nous dèfinissons deux actions avec des ordres similaires sur les matrices à signes alternants et les partitions plane totalement symètriques et autocomplèmentaires.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.