Abstract

The prerequisite for electrocatalytic hydrogenation reactions (EHRs) is H2O splitting to form surface hydrogen species (*H), which occupy catalytic sites and lead to mismatched coverage of *H and reactants, resulting in unsatisfactory activity and selectivity. Thus, modulating the splitting pathway of H2O is significant for optimizing the EHR process. Herein, a Cu-Ag alloy with a superlattice structure of staggered-ordered Cu and Ag is theoretically predicted and experimentally proven to undergo a pathway for H2O splitting called the hydrogen transfer reaction (HTR) in the water layer, which involves the formation of *H, the capture of *H by a water cluster to form H*(H2O)x and subsequent hydrogenation reactions by H*(H2O)x. Taking acetylene hydrogenation as a model case, the as-proposed HTR pathway could lead to a relaxation hydrogenation process to modulate the matching degree of C2H2 and *H, thus enabling a 91.2% C2H4 Faradaic efficiency at a partial current density of 0.38 A cm- 2, greatly outperforming its counterpart without a superlattice structure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.