Abstract

Electrochemical CO2 reduction reaction (CO2RR) yielding value-added chemicals provides a sustainable approach for renewable energy storage and conversion. Bismuth-based catalysts prove to be promising candidates for converting CO2 and water into formate but still suffer from poor selectivity and activity and/or sluggish kinetics. Here, we report that ultrathin porous Bi nanosheets (Bi-PNS) can be prepared through a controlled solvothermal protocol. Compared with smooth Bi nanoparticles (Bi-NPs), the ultrathin, rough, and porous Bi-PNS provide more active sites with higher intrinsic reactivities for CO2RR. Moreover, such high activity further increases the local pH in the vicinity of the catalyst surfaces during electrolysis and thus suppresses the competing hydrogen evolution reaction. As a result, the Bi-PNS exhibit significantly boosted CO2RR properties, showing a Faradaic efficiency of 95% with an effective current density of 45 mA cm-2 for formate evolution at the potential of -1.0 V versus reversible hydrogen electrode.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.