Abstract

The impact of heavy metal ions on the biodenitrification process remains unknown, which is the key to understand the nitrogen cycle in estuarine areas. Here, denitrification rate and the abundance of five denitrifying enzyme genes (narG, nirK, napA, norB and nosZ) in Liaohe Estuary sediments were examined, and the community structure of nirK denitrifying bacteria was also analyzed. The results demonstrate a significant positive correlation between heavy metal content (Cu2+, Zn2+, and Cr) and the denitrification rate, and the abundance of napA/norB (periplasmic nitrate reductase and nitric-oxide reductase) in sediments. The dominant narG denitrifiers were Pseudomonas, Hydrogenophaga, and Serratia known to be tolerant to heavy metal pollution. Sediment particle size, NO3−, NO2−, Zn2+, and Cd2+ were the key factors influencing the denitrifying community structure. These findings suggest that heavy metals may enhance the aerobic denitrification process in sediments and mitigate the adverse effects of high dissolved oxygen levels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.