Abstract

The optimization of synchronization on distributed power grids is an important topic in recent years. We extensively study the optimization by restructuring grid topology in terms of connection rewirings. Due to the node-link dual property of power networks, i.e., the intrinsic generator-load dynamics of nodes and the multiple-attribute connections, we propose the frequency-correlation-optimization scheme to get grid topology with the largest anti-correlation by targeting the frequency-correlation function among nodes. The topology optimizations on both sparse and dense networks are successfully realized. The optimized topology exhibits more generator-consumer connections, indicating that a decentralization of the distribution of generator nodes on power grids favors synchronizability. The benefits of these frequency-correlation-optimized power grids to synchrony are verified. By comparing with the phase-coherence-optimization scheme that favors both the optimal topology and efficient synchronizability, we show that the frequency-correlation optimization and the phase-coherence optimization of power grids are usually compatible, while the former is more efficient and simpler in avoiding tedious simulations of high-dimensional nonlinear dynamics. Our explorations may shed light on the predesign and construction of modern distributed power grids, which are composed of decentralized miscellaneous power sources.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call