Abstract

The construction of an efficient photothermal antibacterial platform is a promising strategy for the treatment of drug-resistant bacterial infections. Herein, through the introduction of excited-state intramolecular proton transfer to promote the photothermal effect, N-(2,4-dihydroxybenzylidene)-4-aminophenol (DOA)-polyvinyl alcohol (PVA) systems (DPVA) can reach 55 °C within 10 s under irradiation. They show superior antibacterial behavior against drug-resistant bacteria and a therapeutic effect on infected skin wounds with only 100 s of irradiation, much faster than those of reported photothermal materials (5-10 min). This work provides a convenient approach to fabricate broad-spectrum antibacterial wound dressings for treating bacteria-infected wounds, greatly contributing to the design and applications of photothermal antibacterial platforms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.