Abstract

Inspired by its great success in the photovoltaic field, methylammonium lead iodide perovskite (MAPbI3 ) has recently been actively explored as photocatalysts in H2 evolution reactions. However, the practical application of MAPbI3 photocatalysts remains hampered by the intrinsically fast trapping and recombination of photogenerated charges. Herein, we propose a novel strategy of regulating the distribution of defective areas to promote charge-transfer dynamics of MAPbI3 photocatalysts. By deliberately designing and synthesizing the MAPbI3 photocatalysts featuring a unique continuation of defective areas, we demonstrate that such a feature enables retardation of charge trapping and recombination via lengthening the charge-transfer distance. As an outcome, such MAPbI3 photocatalysts turn out to achieve an impressive photocatalytic H2 evolution rate as high as 0.64 mmol ⋅ g-1 ⋅ h-1 , one order of magnitude higher than that of the conventional MAPbI3 photocatalysts. This work establishes a new paradigm for controlling charge-transfer dynamics in photocatalysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.