Abstract

A well-designed photocatalyst with excellent activity and selectivity is crucial for photocatalytic CO2 conversion and utilization. TiO2 is one of the most promising photocatalysts. However, its excessive surface oxidation potential and insufficient surface active sites inhibit its activity and photocatalytic CO2 reduction selectivity. In this work, highly dispersed Bi2Ti2O7 was introduced into defective TiO2 to adjust its oxidation potential and the generation of radicals, further inhibiting reverse reactions during the photocatalytic conversion of CO2. Moreover, an in situ topochemical reaction etching route was designed, which achieved defective surfaces, a contacted heterophase interface, and an efficient electron transfer path. The optimized heterophase photocatalyst exhibited 93.9% CH4 selectivity at a photocatalytic rate of 6.8 μmol·g−1·h−1, which was 7.9 times higher than that of P25. This work proposes a feasible approach to fabricating photocatalysts with well-designed band structures, highly dispersed heterophase interfaces, and sufficient surface active sites to effectively modulate the selectivity and activity of CO2 photoreduction by manipulating the reaction pathways.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call