Abstract

SiC-supported Pt nanocatalyst was prepared by electrodeposition of Pt nanoparticles on the surface of high-surface-area SiC, which was fabricated by a versatile carbothermal reduction method. Characterization studies show that such synthesis protocol leads to well distribution of Pt nanoparticles, with a mean particle size of 2.9 nm on the support. This catalyst has been electrochemically characterized toward methanol oxidation, which exhibits higher catalytic activity, durability, and electrochemical active surface area than the electrodeposited Pt on multiwalled carbon nanotubes (MWCNTs). Further investigation reveals that the SiC-supported Pt also shows superior CO tolerance to Pt/MWCNTs. These results suggest that high-surface-area SiC could be a promising supporting material for constructing high-performance methanol oxidation electrocatalysts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.