Abstract

Sepsis-induced acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) is characterized by widespread pulmonary inflammation and immune response, in which proinflammatory polarization of alveolar macrophages (AMs) plays an important role. Mitochondria are the key intracellular signaling platforms regulating immune cell responses. Moreover, accumulating evidence suggests that the mitochondrial dynamics of macrophages are imbalanced in sepsis and severe ALI/ARDS. However, the functional significance of mitochondrial dynamics of AMs in septic ALI/ARDS remains largely unknown, and whether it regulates the polarized phenotype of AMs is also unclear. Here, we demonstrated that the mitochondrial dynamics of AMs are imbalanced, manifested by impaired mitochondrial fusion, increased fission and mitochondrial cristae remodeling, both in septic models and ARDS patients. However, suppressing excessive mitochondrial fission with Mdivi-1 or promoting mitochondrial fusion with PM1 to maintain mitochondrial dynamic equilibrium in AMs could inhibit the polarization of AMs into proinflammatory phenotype and attenuate sepsis-induced ALI. These data suggest that mitochondrial dynamic imbalance mediates altered polarization of AMs and exacerbates sepsis-induced ALI. This study provides new insights into the underlying mechanisms of sepsis-induced ALI, suggesting the possibility of identifying future drug targets from the perspective of mitochondrial dynamics in AMs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.