Abstract

Optical reporting of covalent bond scission in self-assembled structures in water is an important step toward the detection of forces in biological systems. Here we show that micelles of a diblock copolymer comprising hydrophobic poly(butyl acrylate) and hydrophilic poly(acrylic acid) blocks connected by an off-center mechanoresponsive moiety are mechanochemically active when sonicated in aqueous solution. Facile optical read-out of the force-activation is warranted by formation of a blue-fluorescent anthracene cleavage from the mechanophore, an anthracene-maleimide Diels-Alder adduct. In contrast to the efficient bond scission when the block copolymers are noncovalently anchored in liquid-like micellar cores, isolated unimers in solution are not activated by ultrasonication because the dimensions and viscous drag are drastically lower. These results demonstrate that covalent mechanochemistry can be enabled by noncovalent interactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.