Abstract

The development of a fast and safe reactive oxygen species (ROS)-responsive vector is generally limited by the intracellular unstable ROS concentration, and a relatively long time is still needed for the complete intracellular release of drugs or genes induced by ROS. In this work, a gene transfection platform based on ROS-responsive silicon nanowire arrays (SN) is developed, to promote the gene transfection efficiency for several cell lines. Briefly, the surface of the ROS generating system, gold nanoparticle modified SN (SN-Au), is grafted with poly[(2-acryloyl)ethyl(p-boronic acid benzyl)diethylammonium bromide] (B-PDEAEA), an oxidation-responsive charge-reversal cationic polymer. Plasmid DNA (pDNA) bound on the surface through electrostatic interactions was directly delivered into the cells by the time the nanowires penetrate the cells. SN-Au can generate ROS under light treatment, which has an influence on the surface charge change of B-PDEAEA grafted on gold nanoparticles, realizing effective pDNA release in the cytosol for transfection. Nearly 80% of DNA released from the surface of the platform after treated with 1 mM ROS for 10 min. The transfection efficiency of the platform for several cell types was significantly enhanced after a short period of light exposure (3.2-fold for HeLa cells, 7.6-fold for L929 cells, 2.3-fold for BMSC cells and 6.2-fold for mESC cells). The platform also has good biocompatibility. Overall, our results suggest that ROS-responsive SN is a novel, efficient and safe platform for drug and gene transfection.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call