Abstract

<span>Massive multiple-input multiple-output (MIMO) improves spectrum efficiency by increasing the capacity of the wireless structure. Therefore, massive MIMO is promising for fifth generation (5G) wireless communications. In massive MIMO, channel estimation is a crucial part that should achieve reliable performance. Pilots are sent from the end-users to be used for estimating the channel. However, the problem of interference in pilot contamination affects the performance for cell-edge users. Specifically, pilot contamination appears when the same pilot sequence is utilized at the same time by more than one terminal. This lead to an inaccurate estimation of the channel. Consequently, the decoded data will not be reliable. For mitigating these pilot contamination effects, an enhanced fractional frequency reuse (eFFR) scheme is proposed that uses an algorithm in the allocation of pilot sequences to end users’ devices based on the locations of the users from the target base station (BS). The simulation results exhibit that the proposed scenario outweighs the traditional FFR within both signal to interference, and noise ratio (SINR), and capacity. Consequently, the suggested scenario enhances the performance of more than 80% of the cell terminals and the other 20% of the terminals have a slightly lower performance compared to the FFR.</span>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.