Abstract

The enhanced cathodic ECL of Ru(bpy)32+ at a bimetallic element MXenes (TiVC MXene) modified electrode in neutral aqueous conditionis reported. TiVC MXene significantly catalyzed the oxygen reduction reaction (ORR) as well as the electrochemical reduction of Ru(bpy)32+ to produce reactive oxygen species and Ru(bpy)3+. The obtained hydroxyl radical (OH∙) not only oxidized Ru(bpy)3+ to generate Ru(bpy)32+* and emit light through coreactant pathway, but also oxidized Ru(bpy)32+ to Ru(bpy)33+, which caused an annihilation ECL reaction. As a result, two pathways occurred simultaneously to generate strong cathodic ECL signal. Sulfite removes the dissolved oxygen in water and reduces the occurrence of ORR, which prohibits the generation of OH∙ to decrease the ECL signal. The decrement of ECL intensity varied linearly with the concentration of sulfite in the range 2nM to 50μM with a detection limit of 0.14nM (3σ). The proposed sensor exhibited good analytical performance, and could be used in the detection of sulfite in real samples. The results revealed that the electrocatalytic behavior of TiVC MXene is the key factor for strong cathodic Ru(bpy)32+ ECL, which provides new application in ECL sensing field.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.