Abstract
The management of diabetic wounds (DWs) continues to pose a significant challenge in the field of medicine. DWs are primarily prevented from healing due to damage to macrophage efferocytosis and fibroblast dysfunction. Consequently, a treatment strategy that involves both immunoregulation and the promotion of extracellular matrix (ECM) formation holds promise for healing DWs. Nevertheless, existing treatment methods necessitate complex interventions and are associated with increased costs, for example, the use of cytokines and cell therapy, both of which have limited effectiveness. In this study, a new type of ruthenium (IV) oxide nanoparticles (RNPs)-laden hybrid hydrogel dressing with a double network of Pluronic F127 and F68 has been developed. Notably, the hybrid hydrogel demonstrates remarkable thermosensitivity, injectability, immunoregulatory characteristics, and healing capability. RNPs in hydrogel effectively regulate both fibroblasts and macrophages in a cascade manner, stimulating fibroblast differentiation while synergistically enhancing the efferocytosis of macrophage. The immunoregulatory character of the hydrogel aids in restoring the intrinsic stability of the immune microenvironment in the wound and facilitates essential remodeling of the ECM. This hydrogel therefore offers a novel approach for treating DWs through intercellular communication.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.