Abstract

KEY MESSAGE: (1) We systematically analyze the promoter activities of AtCKLs in various tissues; (2) AtCKL2 and AtCKL7 were expressed in early developmental anthers under high temperature (HT) conditions; (3) AtMYB24 may function as a positive regulator of AtCKL2 and AtCKL7 expression under HT. High temperature (HT) can seriously impede plant growth and development, causing severe loss of crop production. In Arabidopsis, AtCKL genes show high similarity to GhCKI, a gene reported to disrupt tapetal programmed cell death in cotton. However, most of AtCKL genes are not well characterized. Here, we systematically analyzed the expression patterns of AtCKLs in various tissues. The expression of AtCKL2 and AtCKL7 was induced in early anther development under HT, which is similar to the case of GhCKI. In silico analysis of AtCKL2 and AtCKL7 promoters indicated that four types of transcription factors (TFs) (MADS, NAC, WRKY and R2R3-MYB) might bind to AtCKL2 and AtCKL7 promoters. Furthermore, three MADS, three NAC, one WRKY, and three R2R3-MYB TFs were up-regulated in stage 1-8 anthers and three R2R3-MYB TFs were up-regulated in stage 9-10 anthers under HT, implying the important roles of R2R3-MYB genes in the response of anthers to HT. Among the R2R3-MYB genes, AtMYB24 showed the similar expression as AtCKL2 and AtCKL7 in the anthers under HT. Additionally, yeast one-hybrid and dual-luciferase reporter system assays verified that AtMYB24 could bind to AtCKL2 and AtCKL7 promoters and activate the expression of these two genes. In brief, this study provides the overall expression profiles of AtCKLs, useful information for unraveling the molecular mechanism of AtCKL2 and AtCKL7 gene expression in early anther development under HT, and important clues for elucidating the mechanism of transcriptional regulation of CKI genes in plant anther under HT, which are critical to the reduction of crop yield loss resulting from HT.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.