Abstract

Bacillus subtilis possesses at least five different forms of RNA polymerase holoenzyme which are distinguished by their sigma subunit and their promoter recognition specificity. Sigma-37 RNA polymerase, a minor form of RNA polymerase, recognizes a class of promoters, which includes promoters for genes transcribed early during endospore formation. We have used site-directed bisulfite mutagenesis to construct a series of single and multiple base substitutions in a promoter recognized by sigma-37 RNA polymerase. In vitro transcription analysis of this series of mutant promoters demonstrated that single base substitutions at positions −36, −16, −15 and −14 most dramatically reduced the efficiency of promoter utilization by sigma-37 RNA polymerase. These results support a model in which sigma-37 RNA polymerase recognizes its cognate promoters by interacting with a sequence of nucleotides near the −10 region and the −35 region of the promoter—a sequence not recognized by B. subtilis sigma-55 RNA polymerase or Escherichia coli RNA polymerase.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.