Abstract

ABSTRACTThe biosynthesis of small-size polyene macrolides is ultimately controlled by a couple of transcriptional regulators that act in a hierarchical way. A Streptomyces antibiotic regulatory protein–large ATP-binding regulator of the LuxR family (SARP-LAL) regulator binds the promoter of a PAS-LuxR regulator-encoding gene and activates its transcription, and in turn, the gene product of the latter activates transcription from various promoters of the polyene gene cluster directly. The primary operator of PimR, the archetype of SARP-LAL regulators, contains three heptameric direct repeats separated by four-nucleotide spacers, but the regulator can also bind a secondary operator with only two direct repeats separated by a 3-nucleotide spacer, both located in the promoter region of its unique target gene, pimM. A similar arrangement of operators has been identified for PimR counterparts encoded by gene clusters for different antifungal secondary metabolites, including not only polyene macrolides but peptidyl nucleosides, phoslactomycins, or cycloheximide. Here, we used promoter engineering and quantitative transcriptional analyses to determine the contributions of the different heptameric repeats to transcriptional activation and final polyene production. Optimized promoters have thus been developed. Deletion studies and electrophoretic mobility assays were used for the definition of DNA-binding boxes formed by 22-nucleotide sequences comprising two conserved heptameric direct repeats separated by four-nucleotide less conserved spacers. The cooperative binding of PimRSARP appears to be the mechanism involved in the binding of regulator monomers to operators, and at least two protein monomers are required for efficient binding.IMPORTANCE Here, we have shown that a modulation of the production of the antifungal pimaricin in Streptomyces natalensis can be accomplished via promoter engineering of the PAS-LuxR transcriptional activator pimM. The expression of this gene is controlled by the Streptomyces antibiotic regulatory protein–large ATP-binding regulator of the LuxR family (SARP-LAL) regulator PimR, which binds a series of heptameric direct repeats in its promoter region. The structure and importance of such repeats in protein binding, transcriptional activation, and polyene production have been investigated. These findings should provide important clues to understand the regulatory machinery that modulates antibiotic biosynthesis in Streptomyces and open new possibilities for the manipulation of metabolite production. The presence of PimR orthologues encoded by gene clusters for different secondary metabolites and the conservation of their operators suggest that the improvements observed in the activation of pimaricin biosynthesis by Streptomyces natalensis could be extrapolated to the production of different compounds by other species.

Highlights

  • The biosynthesis of small-size polyene macrolides is controlled by a couple of transcriptional regulators that act in a hierarchical way

  • PAS-LuxR regulator-encoding genes are associated with several polyene macrolide biosynthetic gene clusters, constituting a possible landmark of this type of gene cluster

  • Their expression is a bottleneck in the biosynthesis of the antifungal; polyene production is increased upon gene dosage increase [20, 21]

Read more

Summary

Introduction

The biosynthesis of small-size polyene macrolides is controlled by a couple of transcriptional regulators that act in a hierarchical way. IMPORTANCE Here, we have shown that a modulation of the production of the antifungal pimaricin in Streptomyces natalensis can be accomplished via promoter engineering of the PAS-LuxR transcriptional activator pimM The expression of this gene is controlled by the Streptomyces antibiotic regulatory protein–large ATP-binding regulator of the LuxR family (SARP-LAL) regulator PimR, which binds a series of heptameric direct repeats in its promoter region. PAS-LuxR regulators are highly conserved transcriptional factors that combine an N-terminal PAS sensory domain [1] with a C-terminal helix-turn-helix (HTH) motif of the LuxR type for DNA binding [2] The archetype of this class of regulators, PimM, was first identified in the antifungal pimaricin biosynthetic gene cluster from Streptomyces natalensis [3]. The extraordinary thing about PimM is that it can bind a large number of operators external to clusters of polyene biosynthesis, thereby controlling the expression of a large number of nonpolyene genes and the processes in which these are involved [7]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call