Abstract

IntroductionGliadins are the major components of gluten proteins with vital roles on properties of end-use wheat product and health-relate quality of wheat. However, the function and regulation mechanisms of γ-gliadin genes remain unclear. ObjectivesDissect the effect of DNA methylation in the promoter of γ-gliadin gene on its expression level and gluten strength of wheat. MethodsThe prokaryotic expression and reduction–oxidation reactions were performed to identify the effect of TaGli-γ-2.1 on dough strength. Bisulfite analysis and 5-Aza-2′-deoxycytidine treatment were used to verify the regulation of TaGli-γ-2.1 expression by pTaGli-γ-2.1 methylation. The content of gluten proteins composition was measured by RP-HPLC, and the gluten strength was measured by Gluten Index and Farinograph. ResultsTaGli-γ-2.1 was classified into a subgroup of γ-gliadin multigene family and was preferentially expressed in the later period of grain filling. Addition of TaGli-γ-2.1 protein fragment into strong gluten wheat flour significantly decreased the stability time. Hypermethylation of three CG loci of pTaGli-γ-2.1 conferred to lower TaGli-γ-2.1 expression. Treatment with 5-Aza-2′-deoxycytidine in seeds of strong gluten wheat varieties increased the expression levels of TaGli-γ-2.1. Furthermore, the accumulations of gliadin and γ-gliadin were significantly decreased in hypermethylated wheat varieties, corresponding with the increasing of gluten index and dough stability time. ConclusionEpigenetic modification of pTaGli-γ-2.1 affected gluten strength by modulating the proportion of gluten proteins. Hypermethylation of pTaGli-γ-2.1 is a novel genetic resource for enhancing gluten strength in wheat quality breeding.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.