Abstract

Glyco-modulation of therapeutic proteins produced in plants has shown great success. Plant-based expression platforms for tailored human-like N-glycosylation are based on the overexpression of foreign genes. However, drawbacks such as protein miss targeting, interference with endogenous glycosyltransferases, or with plant development hamper the widespread use of the technology. Here a technique that facilitates the generation of recombinant proteins with targeted N-glycosylation at high homogeneity is described. It is focused on the synthesis of human-type β1,4-galactosylation by the overexpression of the human β1,4-galactosyltransferase (GalT) in Nicotiana benthamiana. A GalT construct that targets the enzyme to the required late Golgi compartment (ST GalT) is transiently co-expressed with two pharmaceutically relevant glycoproteins. The impact of eight promoters driving the expression of ST GalT is evaluated by mass spectrometry (MS) -based analyses. It is shown that five promoters (amongst them high expressors) induce aberrant non-human glycosylation. In contrast, three promoters, considered as moderately active, regulate gene expression to levels leading to an improved efficiency of di-galactosylation (and subsequent sialylation) on the reporter proteins. The results point to the importance of promoter choice for optimizing glycan engineering processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.