Abstract

Terpene trilactones (TTL) is a pharmacological ingredient in Ginkgo biloba and its content has become one of the key indices for medicinal value evaluation of ginkgo. 1-Deoxy-D-xylulose 5-phosphate reductoisomerase (DXR) catalyzes the first step specific for isopentenyl diphosphate production in methylerythritol phosphate pathway, which provide the basic structure required for TTLs biosynthesis. To understand the mechanism controlling the GbDXR gene expression, the GbDXR promoter sequence was isolated and subjected to transient expression with the green fluorescent protein (GFP) in tobacco plants. Characteristic analysis revealed various cis-acting elements that related to light-regulated transcription, hormone signaling (auxin, ethylene), adversity stress and defense signaling (heat/dehydration stress) in the GbDXR promoter region. In transient expression assay, deletion of different portions of the upstream GbDXR promoter identified that the promoter region -3230bp to -865bp conserve the positive regulation function, which could promote the expression of GFP in the cytoplasm of tobacco leaf epidermal cells. The regulation function of the promoter region -865bp to -262bp remained to be elucidated. EMSA analysis suggested possible interactions of GbERF10 and GbERF17 with the ERF-binding elements in the upstream of GbDXR promoter. For abiotic stresses treatment, the expression of GbDXR gene could be significantly induced by UV-B and drought stress. In general, the GbDXR gene expressed differently in different ginkgo tissues but exhibited the highest transcriptional level in the root, with the maximum TTLs content simultaneously. The positive relationship between gene expression level and TTLs content indicated that the GbDXR is responsible for TTLs biosynthesis in G. biloba.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call