Abstract

Thermomicrobium roseum sarcosine oxidase (TrSOX) was a N-demethylase with specific substrate chiral selectivity, outstanding thermostability and environmental resistance. To promote the expression of TrSOX in Bacillus subtilis W600, the HpaII promoter of pMA5 plasmid was replaced by constitutive or inducible promoters. Through orthogonal experiment, the expression process was optimized, B. subtilis W600 cells containing pMA5-Pxyl-trSOX plasmid were cultivated until OD600nm reached 2.0 and were then induced with 1.6% xylose at 37 °C for 2 h, and the native environment of T. roseum was simulated by heating at 80 °C, with the productivity of TrSOX increased from ~8.3 to ~66.7 μg/g wet cells; and the simulated high temperature was the key switch for the final folding. To reduce the surface hydrophobicity, a S320R mutant was built to form a hydrophilic lid around the entrance of the substrate pocket, and the yield of TrSOX (S320R) was ~163.0 μg/g wet cells, approximately 20 folds as that in the initial expression system. This mutant revealed the similar secondary structure, stability, resistance, chiral substrate selectivity and optimal reaction environment with wild type TrSOX; however, the N-demethylation activities for amino acid derivative substrates were dramatically increased, while those for hydrophobic non-amino acid compounds were repressed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.