Abstract

It is hoped that two-dimensional (2D) semiconductors overcome the short channel effect and continue Moore's law. However, 2D material-based ultra-short channel devices still face the challenge of simultaneously achieving high-performance (HP) and low-power (LP) consumption. Here, we theoretically designed monolayer OM2S (M = Ga, In)-based metal-oxide-semiconductor field-effect transistors (MOSFETs), considering the gate length from 1 to 5 nm, doping concentration and underlap structure. We found that in HP (LP) applications, the on-state current exceeds 1000 (500) μA μm-1 under a 1 nm (2 nm) gate length, surpassing the needs of the International Technology Roadmap for Semiconductors (ITRS) in 2028. The subthreshold swing is close to the Boltzmann tyranny (60 mV dec-1) even as the gate length shrinks to 2 nm. The energy-delay product is two orders lower than 1.02 × 10-28 J s μm-1, indicating extraordinary high-speed manipulation and low-energy expending. Therefore, monolayer OM2S has great application in ultra-short scale devices with HP and LP consumption, and can be taken as a candidate to extend Moore's Law.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.