Abstract
<p>A purely statistical machine learning (ML) approach was applied to forecast near-surface temperature and precipitation anomalies over land areas in the Northern Hemisphere and Tropics. A high number of principal components (PCs) from the key variables, most importantly sea surface temperatures and the near-tropopause geopotential from reanalyses, was used as predictors to forecast the 2-weekly mean predictand anomalies in each location. Separate models were fitted for different seasons and lead times in the range of 1–6 weeks.<br><br></p><p>To select and weight the predictors and to reduce the risk of overfitting, such ML methods as least absolute shrinkage and selection operator (LASSO) regularization and ensembling based on random sampling of the predictor data were used in addition to the dimensionality reduction with PCs.</p><p><br>Skill analysis of the independent test sample results show that both the climatological and persistence reference forecasts were inferior compared to the ML approach on average, with all lead times, and in the majority of the target grid cells. Also, the ML approach achieved a skill that was generally comparable to the European Centre for Medium-Range Weather Forecasts (ECMWF) dynamical model.</p><p> </p><p>Previously, these particular ML methods have been shown to work in a regional approach in Europe for seasonal time scales. According to the new results, they also work in the near-global domain and in the challenging subseasonal time scales.</p>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.