Abstract
Autonomous Mobile Robots, as the advanced version of Automated Guided Vehicles have received a lot of interest and recognition in recent years. Simultaneous Localization and Mapping (SLAM) techniques enable the vehicles to independently navigate and map their surroundings so that they can drive autonomously in changing and uncharted areas. Due to the increasing importance and contributive development of SLAMs for automated guided vehicles and autonomous mobile robots, this study seeks to provide an in-depth analysis of well-known SLAM techniques developed and applied during the previous ten years. Well-known SLAM algorithms considered in this paper include GMapping, Cartographer, LIO-SAM, and so on. They are mainly examined and compared from the viewpoints of basic principles, sensor requirements, computing complexity, and performance. The aim of this paper is to offer insights into various SLAM approaches to researchers, practitioners, and developers in the field of automated guided vehicles and autonomous mobile robots, facilitating the selection of suitable SLAM methods for specific applications and fostering innovation in autonomous navigation and mapping.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.