Abstract

The continued search for routes to improve the power and energy density of lithium ion batteries for electric vehicles and consumer electronics has resulted in significant innovation in all cell components, particularly in electrode materials design. In this Review, we highlight an often less noted route to improving energy density: increasing the Li+ transference number of the electrolyte. Turning to Newman’s original lithium ion battery models, we demonstrate that electrolytes with modestly higher Li+ transference numbers compared to traditional carbonate-based liquid electrolytes would allow higher power densities and enable faster charging (e.g., >2C), even if their conductivity was substantially lower than that of conventional electrolytes. Most current research in high transference number electrolytes (HTNEs) focuses on ceramic electrolytes, polymer electrolytes, and ionomer membranes filled with nonaqueous solvents. We highlight a number of the challenges limiting current HTNE systems and suggest a...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.