Abstract

Rheumatoid arthritis (RA) is a chronic inflammatory illness caused by an autoimmune disorder of synovial membrane resulting in synovial membrane dysfunction. The available treatment particularly focuses on inhibiting macrophage proliferation and reducing the generation of pro-inflammatory cytokines. However, therapeutic success of current treatment options at targeted site is limited; therefore, development of promising therapeutic strategy is the need of time that may provide better targeted delivery of drug with added safety. In development of precision medicine to manage RA, nanotechnology is a viable option to be considered. Recent research using nanoparticles for the treatment of RA, particularly polymeric nanoparticles, has been discussed in this article. Using polymeric nanoparticles as a therapeutic method has shown considerable promise of enhancing treatment success over standard medications used in routine. It is exclusively evident that the viability of using nanoparticles is mainly owed due to their biocompatibility, chemical stability, controlled drug release, and selective drug delivery to inflamed tissues in RA model animals. The current analysis focuses on the critical design characteristics of RA-targeted nanotechnology-based strategies in quest of better therapeutic strategies for RA, and to identify leading polymer as the most effective medications in RA therapy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.