Abstract

The purpose of this study is to demonstrate feasibility of an integrated wastewater algae-to-biocrude process that can sustainably cultivate algal biomass for biofuel production. This process used pilot-scale algal cultivation ponds fed with municipal wastewater as the nutrient source. The open ponds were self-inoculated from the wastewater source, resulting in a mixed-culture microalgal community with distinct differences compared to laboratory-maintained and fertilized monocultures: 29.0% dry weight (dw) ash, 48.9% ash-free dry weight (afdw) carbon, 37.5% afdw oxygen, and 14.0% afdw lipid. The harvested algae was processed using hydrothermal liquefaction at 350 °C (autogenous pressures up to 2000 psig) for 1 h using 3 g of freeze-dried algae and 50 mL of water. The yield of biocrude was 44.5 ± 4.7% afdw, with an elemental weight percent composition of 78.7% carbon, 10.1% hydrogen, 4.4% nitrogen, and 5.5% oxygen and an energy content of 39 MJ/kg. Hydrothermal processing also resulted in the formation of ...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call