Abstract

A novel oxonitridosilicate phosphor host Sr(3)Si(2)O(4)N(2) was synthesized in N(2)/H(2) (6%) atmosphere by solid state reaction at high temperature using SrCO(3), SiO(2), and Si(3)N(4) as starting materials. The crystal structure was determined by a Rietveld analysis on powder X-ray and neutron diffraction data. Sr(3)Si(2)O(4)N(2) crystallizes in cubic symmetry with space group Pa ̅3, Z = 24, and cell parameter a = 15.6593(1) Å. The structure of Sr(3)Si(2)O(4)N(2) is constructed by isolated and highly corrugated 12 rings which are composed of 12 vertex-sharing [SiO(2)N(2)] tetrahedra with bridging N and terminal O to form three-dimensional tunnels to accommodate the Sr(2+) ions. The calculated band structure shows that Sr(3)Si(2)O(4)N(2) is an indirect semiconductor with a band gap ≈ 2.84 eV, which is close to the experimental value ≈ 2.71 eV from linear extrapolation of the diffuse reflection spectrum. Sr(3-x)Si(2)O(4)N(2):xEu(2+) shows a typical emission band peaking at ~600 nm under 460 nm excitation, which perfectly matches the emission of blue InGaN light-emitting diodes. For Ce(3+)/Li(+)-codoped Sr(3)Si(2)O(4)N(2), one excitation band is in the UV range (280-350 nm) and the other in the UV blue range (380-420 nm), which matches emission of near-UV light-emitting diodes. Emission of Sr(3-2x)Si(2)O(4)N(2):xCe(3+),xLi(+) shows a asymmetric broad band peaking at ~520 nm. The long-wavelength excitation and emission of Eu(2+) and Ce(3+)/Li(+)-doped Sr(3)Si(2)O(4)N(2) make them attractive for applications in phosphor-converted white light-emitting diodes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.