Abstract

Spinel-type cobalt oxides with formula HxLiyCo3−δO4 exhibit interesting properties for various electrochemical energy storage applications thanks to their attractive electronic properties, due to the presence of H and Li ions in their structure as well as their nanometric dimensions. The effect of temperature on the H and Li environments is studied by investigating materials heat-treated at temperatures ranging from 25 to 650 °C by means of NMR spectroscopy. Two types of proton are evidenced: one bonded to oxygen atoms belonging to the network (hydroxyl group) and the other one involved in the H2O molecule. This configuration is in agreement with IR spectroscopy measurements, revealing the absence of free −OH groups, which mean that protons in the structure are involved in hydrogen bonds. After heat treatments at increasing temperature, NMR confirms that hydrogen is released, which induces first the migration of Li ions beyond 200 °C (probably from the 8a to the 16c sites), followed by a progressive reorg...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.