Abstract

Autologous nerve transplantation is the gold standard for treating peripheral nerve defects, but it is associated with defects such as insufficient donor and secondary injury. Artificial nerve guidance conduits (NGCs) are now considered promising alternatives for bridging long nerve gaps, although exploring new biomaterials to construct NGCs remains challenging. Silk fibroin (SF) has good biocompatibility and can self-assemble in aqueous solutions. However, the lack of proximal neurotrophic factors after nerve injury is a major concern, leading to incomplete nerve regeneration. In this study, NT-3, a neurotrophin that promotes neuronal survival and differentiation, was bound to the light chain of silk fibroin (FIBL) in two ways: one was directly bound to FIBL (FIBL-NT3) and the other was a polypeptides-linker (FIBL-Linker-NT3). The design aimed to take advantage of silk fiber's character of self-assembly of heavy-light chains and test whether a flexible linker with NT3 molecule is easy to be a NT3 dimer, the active form. In vitro studies indicated that FIBL-Linker-NT3 combined with SF membranes promoted axon growth in adult rat dorsal root ganglion (DRG) neurons. Then we tested if FIBL-Linker-NT3 could self-assemble with the SF heavy chain (SFH). DTT (Dithiothreitol) was used to break the disulfide bonds between the SF light and heavy chains, and the light-chain protein was removed via dialysis. SFH was assembled using FIBL-Linker-NT3, as evidenced by the western blotting results that showed a high molecular band corresponding to SFH-FIBL-Linker-NT3. Chitosan scaffolds have been identified to provide a suitable microenvironment, so a chitosan/SF-FIBL-Linker-NT3 conduit was also constructed. Nerve transplantation of this conduit was evaluated in vivo in a rat sciatic nerve defect model. Immunohistochemical assays showed that the chitosan/SF-FIBL-Linker-NT3 group was superior to the chitosan/PBS, SF, PBS + FIBL-Linker-NT3 groups in nerve regeneration. In addition, the chitosan/SF-FIBL-Linker-NT3 conduit-transplanted group exhibited better recovery in terms of neurite length, sciatic functional index value, sensitivity to heat, time on the rotarod, wet weight ratio, cross-sectional area, compound muscle action potential, number of myelin layers, and myelin thickness in the nerve. Taking together, our study identified that FIBL-Linker-NT3 could promote axonal growth and regeneration in vivo and in vitro and is a promising candidate biomaterial for artificial NGCs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call