Abstract
Caffeoylquinic acids, flavonoids, and coumarins isolated from Artemisia capillaris have recently emerged as therapeutic candidates for diabetes and diabetic complications; however, there have been very few studies of the anti-diabetic potential of polyacetylenes. In the present study, we investigated the anti-diabetic potential of two polyacetylenes isolated from A. capillaris, namely capillin and capillinol by investigating their ability to inhibit α-glucosidase, protein tyrosine phosphatase 1B (PTP1B), and rat lens aldose reductase (RLAR). Capillin displayed potent inhibitory activity against α-glucosidase, PTP1B, and RLAR, while capillinol showed moderate inhibitory activity against α-glucosidase and PTP1B at the concentrations tested. In addition, a kinetic study revealed that capillin inhibited α-glucosidase and RLAR in a noncompetitive manner, while inhibited PTP1B in a mixed-type manner. Capillinol inhibited α-glucosidase and PTP1B in a mixed-type manner. Docking simulations of these compounds demonstrated negative binding energies and close proximity to residues in the binding pocket of PTP1B, indicating that these polyacetylenes have a high affinity and tight binding capacity for the active site of the enzyme. Furthermore, capillin dose-dependently inhibited peroxynitrite (ONOO(-))-mediated tyrosine nitration. The results clearly demonstrate the promising potential of capillin and capillinol as therapeutic interventions for the management of diabetes as well as diabetes-associated complications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.