Abstract
This paper is concerned with the security-constrained optimal power flow (SCOPF) problem, where each contingency corresponds to the outage of an arbitrary number of lines and generators. The problem is studied by means of a convex relaxation, named semidefinite program (SDP). The existence of a rank-1 SDP solution guarantees the recovery of a global solution of SCOPF. We prove that the rank of the SDP solution is upper bounded by the treewidth of the power network plus one, which is perceived to be small in practice. We then propose a decomposition method to reduce the computational complexity of the relaxation. In the case where the relaxation is not exact, we develop a graph-theoretic convex program to identify the problematic lines of the network and incorporate the loss over those lines into the objective as a penalization (regularization) term, leading to a penalized SDP problem. We perform several simulations on large-scale benchmark systems and verify that the global minima are at most 1% away from the feasible solutions obtained from the proposed penalized relaxation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.