Abstract

The direct interaction between large-scale interplanetary disturbances emitted from the Sun and the Earth’s magnetosphere can lead to geomagnetic storms representing the most severe space weather events. In general, the geomagnetic activity is measured by the Dst index. Consequently, its accurate prediction represents one of the main subjects in space weather studies. In this scenario, we try to predict the Dst index during quiet and disturbed geomagnetic conditions using the interplanetary magnetic field and the solar wind parameters. To accomplish this task, we analyzed the response of a newly developed neural network using interplanetary parameters as inputs. We strongly demonstrated that the training procedure strictly changes the capability of giving correct forecasting of stormy and disturbed geomagnetic periods. Indeed, the strategy proposed for creating datasets for training and validation plays a fundamental role in guaranteeing good performances of the proposed neural network architecture.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.