Abstract
Gene expression datasets have been successfully applied for a variety of purposes, including cancer classification. The challenges faced in developing effective classifiers for expression datasets are high dimensionality and over-fitting. Gene selection is an effective and efficient method to overcome these challenges and improve the predictive accuracy of a classifier. Based on PROMETHEE, this paper introduces a multi-filter ensemble approach by integrating the results of two potential filters namely MaCΨ-filter and PCRWG-filter to pre-select the most informative genes. Experiments were conducted on nine microarray datasets to demonstrate the performance of the proposed method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.