Abstract
Mobile apps have been an integral part in our daily life. As these apps become more complex, it is critical to provide automated analysis techniques to ensure the correctness, security, and performance of these apps. A key component for these automated analysis techniques is to create a graphical user interface (GUI) model of an app, i.e., a window transition graph (WTG), that models windows and transitions among the windows. While existing work has provided both static and dynamic analysis to build the WTG for an app, the constructed WTG misses many transitions or contains many infeasible transitions due to the coverage issues of dynamic analysis and over-approximation of the static analysis. We propose ProMal, a tribrid analysis that synergistically combines static analysis, dynamic analysis, and machine learning to construct a precise WTG. Specifically, ProMal first applies static analysis to build a static WTG, and then applies dynamic analysis to verify the transitions in the static WTG. For the unverified transitions, ProMal further provides machine learning techniques that leverage runtime information (i.e., screenshots, UI layouts, and text information) to predict whether they are feasible transitions. Our evaluations on 40 real-world apps demonstrate the superiority of ProMal in building WTGs over static analysis, dynamic analysis, and machine learning techniques when they are applied separately.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.