Abstract

BackgroundHypoxia exposure is known to induce an alteration in skeletal muscle fiber-type distribution mediated by hypoxia-inducible factor (HIF)-α. The downstream pathway of HIF-α leading to fiber-type shift, however, has not been elucidated. The calcineurin pathway is one of the pathways responsible for slow muscle fiber transition. Because calcineurin pathway is activated by vascular endothelial growth factor (VEGF), one of the factors induced by HIF-1α, we hypothesized that the stabilization of HIF-1α may lead to slow muscle fiber transition via the activation of calcineurin pathway in skeletal muscles. To induce HIF-1α stabilization, we used a loss of function strategy to abrogate Prolyl hydroxylase domain protein (PHD) 2 responsible for HIF-1α hydroxylation making HIF-1α susceptible to ubiquitin dependent degradation by proteasome. The purpose of this study was therefore to examine the effect of HIF-1α stabilization in PHD2 conditional knockout mouse on skeletal muscle fiber-type transition and to elucidate the involvement of calcineurin pathway on muscle fiber-type transition.ResultsPHD2 deficiency resulted in an increased capillary density in skeletal muscles due to the induction of vascular endothelial growth factor. It also elicited an alteration of skeletal muscle phenotype toward the type I fibers in both of the soleus (35.8 % in the control mice vs. 46.7 % in the PHD2-deficient mice, p < 0.01) and the gastrocnemius muscle (0.94 vs. 1.89 %, p < 0.01), and the increased proportion of type I fibers appeared to correspond to the area of increased capillary density. In addition, calcineurin and nuclear factor of activated T cell (NFATc1) protein levels were increased in both the gastrocnemius and soleus muscles, suggesting that the calcineurin/NFATc1 pathway was responsible for the type I fiber transition regardless of PGC-1α, which responded minimally to PHD2 deficiency. Indeed, we found that tacrolimus (FK-506), a calcineurin inhibitor, successfully suppressed slow fiber-type formation in PHD2-deficient mice.ConclusionsTaken together, stabilized HIF-1α induced by PHD2 conditional knockout resulted in the transition of muscle fibers toward a slow fiber type via a calcineurin/NFATc1 signaling pathway. PHD2 conditional knockout mice may serve as a model for chronic HIF-1α stabilization as in mice exposed to low oxygen concentration.Electronic supplementary materialThe online version of this article (doi:10.1186/s13395-016-0079-5) contains supplementary material, which is available to authorized users.

Highlights

  • Hypoxia exposure is known to induce an alteration in skeletal muscle fiber-type distribution mediated by hypoxia-inducible factor (HIF)-α

  • We evaluated the efficiency of Phd2 deletion in the both gastrocnemius and soleus muscles of tamoxifen-treated Phd2f/f/ Rosa26CreERT2 mice using quantitative reverse transcription polymerase chain reaction

  • We demonstrated that HIF-1α stabilization by PHD2 knockout elicited a transition of skeletal muscle fiber type toward the slow fiber type and that this may have occurred through the activation of calcineurin/NFATc1 signaling pathway in vivo

Read more

Summary

Introduction

Hypoxia exposure is known to induce an alteration in skeletal muscle fiber-type distribution mediated by hypoxia-inducible factor (HIF)-α. Recent reports suggested that the exposure to 8 % hypoxic condition showed the shift of the soleus muscle fiber type toward type I phenotype in mice [12] In another previous study, it was demonstrated that HIF-1α knockdown suppressed the increase of myosin heavy chain (MyHC) I messenger RNA (mRNA) in cultured C2C12 myotubes compared with those cultured under 4 % oxygen in vitro [13]. It was demonstrated that HIF-1α knockdown suppressed the increase of myosin heavy chain (MyHC) I messenger RNA (mRNA) in cultured C2C12 myotubes compared with those cultured under 4 % oxygen in vitro [13] These studies imply the stabilization of HIF-1α is strongly associated with the expression of slow myosin heavy chain, the downstream pathway leading to fibertype shift to type I has not been elucidated

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call