Abstract
The rapid reticuloendothelial system (RES) mediated clearance of superparamagnetic iron oxide nanoparticles (SPIONs) from circulation is considered a major limitation of their clinical utility. We aimed to address this by using dextran sulfate 500 (DSO4 500), a Kupffer cell blocking agent, to prolong SPIONs circulatory time. Blood concentrations of SPIONs are difficult to quantify due to the presence of haemoglobin. We therefore developed methods to functionalise SPIONs with near-infrared (NIR) dyes in order to trace their biodistribution. Two SPIONs were investigated: Nanomag®-D-spio-NH(2) and Ferucarbotran. Nanomag®-D-spio-NH(2) was functionalised using NHS (N-hydroxysuccinimide) ester NIR dye and Ferucarbotran was labelled using periodate oxidation followed by reductive amination or a combination of EDC (ethyl(dimethylaminopropyl) carbodiimide )/NHS and click chemistries. Stability after conjugation was confirmed by dynamic light scattering (DLS), superconducting quantum interference device (SQUID) and transmission electron microscopy (TEM). In vivo experiments with the functionalised SPIONs showed a significant improvement in SPIONs blood concentrations in mice pre-treated with dextran sulfate sodium salt 500 (DSO4 500).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.