Abstract

An immortalized promyelocytic cell line was studied to detect how doxorubicin uptake is affected by microgravity. The purpose of this experiment was to identify the effect that microgravity may have on multidrug resistance in leukocytes. HL60 cells and HL60 cells resistant to anthracycline (HL60/AR) were grown in RPMI and 10% FBS. Upon reaching orbit in the Space Shuttle Endeavour, the cells were robotically mixed with doxorubicin. Three days after mixing, cells were fixed with paraformaldehyde/glutaraldehyde. Ground control experiments were conducted concurrently using a robot identical to the one used on the Shuttle. Fixed cells were analyzed within 2 weeks of launch. Confocal micrographs identified changes in cell structure (transmittance), drug distribution (fluorescence), and microtubule polymerization (fluorescence). Flight cells showed a lack of cytoskeletal polymerization resulting in an overall amorphic globular shape. Doxorubicin distribution in ground cells included a large numbers of vesicles relative to flight cells. There was a greater amount of doxorubicin present in flight cells (85% ± 9.7) than in ground control cells (43% ± 26) as determined by image analysis. Differences in microtubule formation between flight cells and ground cells could be partially responsible for the differences in drug distribution. Cytoskeletal interactions are critical to the function ofP-glycoprotein as a drug efflux pump responsible for multidrug resistance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.