Abstract

Ionic migration has been the subject of intensive study, both theoretical and experimental, over the past 40 years. It is known as a reliability concern for printed wiring boards (PWBs) in high density microelectronic packaging and power electronic packaging. Ionic migration is an electrochemical phenomena that occurs primarily under normal ambient conditions: i.e. when the local temperatures and current densities are low enough to allow moisture on the surface. Standardised test 85°C/85%RH is typically used for accelerating and predicting ionic migration failure, however, the possibility of moisture condensation — a prerequisite for ionic migration — at a relatively high temperature and low relative humidity is unlikely. In order to assess more realistic and less thermally severe environments, this work examines prolonged steady state exposure of PWBs. Steady-state conditions of 90%RH at 30°C under a bias of 5V DC were tested over a 210 day period with continuous in-situ monitoring of dendritic growth. Investigative techniques were conducted to evaluate the migration development on the PWBs after testing using optical microscopy, scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDS). This paper will demonstrate that steady-state thermal humidity bias (THB) tests appear to provide ionic migration behaviour similar in service conditions, however, do not demonstrate the dramatic failure associated with ionic migration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.