Abstract

BackgroundSleep disruption is a frequent occurrence in modern society. Whereas many studies have focused on the consequences of total sleep deprivation, few have investigated the condition of sleep disruption. New methodWe disrupted sleep of mice during the light period for 9 consecutive days using an intermittently rotating disc. ResultsElectroencephalogram (EEG) data demonstrated that non-rapid eye movement (NREM) sleep was severely fragmented and REM sleep was essentially abolished during the 12h light period. During the dark period, when sleep was not disrupted, neither NREM sleep nor REM sleep times differed from control values. Analysis of the EEG revealed a trend for increased power in the peak frequency of the NREM EEG spectra during the dark period. The fragmentation protocol was not overly stressful as body weights and water consumption remained unchanged, and plasma corticosterone did not differ between mice subjected to 3 or 9 days of sleep disruption and home cage controls. However, mice subjected to 9 days of sleep disruption by this method responded to lipopolysaccharide with an exacerbated febrile response. Comparison with existing methodsExisting methods to disrupt sleep of laboratory rodents often subject the animal to excessive locomotion, vibration, or sudden movements. This method does not suffer from any of these confounds. ConclusionsThis study demonstrates that prolonged sleep disruption of mice exacerbates febrile responses to lipopolysaccharide. This device provides a method to determine mechanisms by which chronic insufficient sleep contributes to the etiology of many pathologies, particularly those with an inflammatory component.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.