Abstract

Cartilage degeneration occurs when the catabolic factors overtakes the anabolic factors. The regeneration capability of damaged cartilage is poor due to its hypovascular and hypocellular tissue. Tissue engineering strategies aims in development of a suitable substrate that provide the required physical, chemical and biological cues to the proliferating cells to direct chondrogenesis. A macroporous polymeric blend scaffold of chitin and poly(caprolactone) (PCL) was fabricated by lyophilisation technique and characterized using Scanning Electron Microscope (SEM), Fourier Transform Infrared Spectroscopy (FTIR) and Thermogravimetric/Differential thermal Analysis (TG/DTA). The effect of prolonged release of Transforming growth factor-β (TGF-β) was studied by encapsulating it in chondroitin sulphate nanoparticles (nCS) incorporated in chitin-PCL scaffold. Chondroitin sulphate nanoparticles containing TGF-β (TGF-β-nCS) was developed by polyelectrolyte crosslinking using chitosan. Characterization of TGF-β-nCS by Dynamic Light Scattering particle sizer and SEM showed a 230±20nm sized spherical particles. Swelling and degradation studies of the composite scaffold showed its stability. Protein adsorption was enhanced in nanoparticle containing scaffold. The effect of TGF-β was well addressed by the increased attachment and proliferation of rabbit adipose derived mesenchymal stem cells (rASCs). The chondrogenic potential of rASCs in the presence of TGF-β releasing composite scaffold showed an increased proteoglycan deposition. These studies highlight the positive effects of chitin-PCL-TGF-β-nCS scaffold for cartilage regeneration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.