Abstract

Natural active polysaccharides are attracting increased attention from pharmaceutical industries for their valuable biological activities. However, the application of polysaccharides has been restricted due to their relatively large molecular weight, complex structure, and instability. Metal-organic frameworks (MOFs) have emerged to help deliver cargo to specific locations, achieving the objectives of eliminating the potential damage to the body, protecting the drugs, and improving therapeutic effectiveness. Here, a pH-responsive zeolitic imidazolate framework (ZIF-8) was synthesized to encapsulated three sulfated polysaccharides (heparin, fucan sulfate, fucosylated chondroitin sulfate) and a non-sulfated polysaccharide, hyaluronic acid. The resulting polysaccharides@ZIF-8 biocomposites showed differences in terms of morphology, particle size, encapsulation, and release efficiency. These biocomposites retained antithrombotic activity and the framework ZIF-8 effectively protected these polysaccharides from degradation and prolonged shelf-life of the anticoagulants from the unfavorable environment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call