Abstract
The post-stimulation response of neural activities plays an important role to evaluate the effectiveness and safety of neural modulation techniques. Previous studies have established the capability of infrared neural modulation (INM) on neural firing regulation in the central nervous system (CNS); however, the dynamic neural activity after the laser offset has not been well characterized yet. We applied 980-nm infrared diode laser light to irradiate the primary motor cortex of rats, and tungsten electrode was inserted to record the single-unit activity of neurons at the depth of 800-1000μm (layer V of primary motor cortex). The neural activities were assessed through the change of neural firing rate and firing pattern pre- and post-stimulation with various radiant exposures. The results showed that the 980-nm laser could modulate the firing properties of neurons in the deep layer of the cortex. More neurons with post-stimulation response (78% vs. 83%) were observed at higher stimulation intensity (0.803J/cm2 vs. 1.071J/cm2, respectively). The change of firing rate also increased with radiant exposures increasing, and the response lasted up to 4.5s at 1.071J/cm2, which was significantly longer than the theoretical thermal relaxation time. Moreover, the increasing Fano factors indicated the irregularity firing pattern of post-stimulation response. Our results confirmed that neural activity maintained a prolonged post-stimulation response after INM, which may provide necessary measurable data for optimization of INM applications in CNS.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.