Abstract

During mitotic chromosome segregation, the protease separase severs cohesin between sister chromatids. A probe for separase activity has shown that separase undergoes abrupt activation shortly before anaphase onset, after being suppressed throughout metaphase; however, the relevance of this control remains unclear. Here, we report that separase activates precociously, with respect to anaphase onset, during prolonged metaphase in multiple types of cancer cell lines. The artificial extension of metaphase in chromosomally stable diploid cells leads to precocious activation and, subsequently, to chromosomal bridges in anaphase, which seems to be attributable to incomplete cohesin removal. Conversely, shortening back of a prolonged metaphase restores the activation of separase and ameliorates anaphase bridge formation. These observations suggest that retarded metaphase progression affects the separase activation profile and its enzymatic proficiency. Our findings provide an unanticipated etiology for chromosomal instability in cancers and underscore the relevance of swift mitotic transitions for fail-safe chromosome segregation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.