Abstract

Mouse astrocytes deficient in the mitochondrial form of superoxide dismutase do not grow in culture under 20% atmospheric O2 levels. By flow cytometry, immunocytochemistry, and enzymatic analysis we have shown that the oxygen block of cell division is due to a decrease in the number of cells entering the S phase of the cell cycle and is concomitant with higher DNA oxidation and impairment of mitochondrial functions. Seeding the cells under 5% O2 until the cultures become confluent can circumvent this problem. An initial hypoxic environment increases the resistance of manganese superoxide dismutase-deficient astrocytes to superoxide radicals artificially produced by paraquat treatment, preserves respiratory activity, and allows normoxic division during a subsequent passage. DNA oxidation is then not higher than in wild-type control cells. However, the adaptation of the cells is not due to compensation by other enzymes of the antioxidant defense system and is specific to cells totally lacking manganese superoxide dismutase. Alteration of the phenotype by prior hypoxia exposure in the SOD2-deficient mutant provide a unique model to study adaptative mechanisms of cellular resistance to oxygen toxicity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.